On Quantified Propositional Logics and the Exponential Time Hierarchy

نویسندگان

  • Miika Hannula
  • Juha Kontinen
  • Martin Lück
  • Jonni Virtema
چکیده

We study quantified propositional logics from the complexity theoretic point of view. First we introduce alternating dependency quantified boolean formulae (ADQBF) which generalize both quantified and dependency quantified boolean formulae. We show that the truth evaluation for ADQBF is AEXPTIME(poly)-complete. We also identify fragments for which the problem is complete for the levels of the exponential hierarchy. Second we study propositional team-based logics. We show that DQBF formulae correspond naturally to quantified propositional dependence logic and present a general NEXPTIME upper bound for quantified propositional logic with a large class of generalized dependence atoms. Moreover we show AEXPTIME(poly)-completeness for extensions of propositional team logic with generalized dependence atoms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantified CTL: expressiveness and model checking

While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics)...

متن کامل

Quantified CTL : expressiveness and model checking ( Extended abstract ) Arnaud

While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics)...

متن کامل

Complete Problems of Propositional Logic for the Exponential Hierarchy

Large complexity classes, like the exponential time hierarchy, received little attention in terms of finding complete problems. In this work a generalization of propositional logic is investigated which fills this gap with the introduction of Boolean higher-order quantifiers or equivalently Boolean Skolem functions. This builds on the important results of Wrathall and Stockmeyer regarding compl...

متن کامل

Quantified CTL: Expressiveness and Complexity

While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics)...

متن کامل

Truth Values and Connectives in Some Non-Classical Logics

The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016